原标题:想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

伊瓢 发自 凹非寺



美高梅注册 1



“麻烦帮我把照片上这个美女转过来,脸朝前。”

设计师们总是接到这种神奇的需求,但是受限于素材和工具的“想象力”,设计师无法凭空推理出背影女子的正脸是美女还是恐龙,这种需求根本无法达成。

不过,AI似乎把这个问题解决了。不过转过来的不是美女,而是香车。



美高梅注册 2



我们看到图上汽车的背影,几辆车在道路的右侧向前行驶。清华、MIT和谷歌的研究人员,通过AI“脑补”3D图形,成功的让最后面这辆黑色的车“掉头”了。

先打个左转弯转过来。



美高梅注册 3



然后掉头180°,开始“逆行”。



美高梅注册 4



而且除此之外,这项研究成果还可以实现“看图拍电影”功能,一张静态图就可以演化出一系列不同帧的镜头。

比如雾霾天气路上的车辆:



美高梅注册 5



准备超车,成功超越,消失在雾霾中。



美高梅注册 6



或者给道路上的车“喷上”不同的颜色。



美高梅注册 7



这样看,似乎这项技术不仅帮设计师解决了难题,甚至以后电影拍摄也可以在GPU里进行了。

这项研究本身基于三类研究:

1.可解释的图像表示,比如Tejas D Kulkarni的DC-IGN;

2.深度生成模型,比如大家都知道的GAN;

3.深度图像处理,比如风格迁移。

不过这些研究主要还是围绕2D图像来进行的,我们介绍的这项新研究则在其中加入了3D感知

语义、纹理、几何分层

主要的原理是将图像的语义、纹理、几何三个维度分层,分别经过一系列去渲染和渲染流程。



美高梅注册 8



先让原图像经过语义去渲染器,生成语义地图;同时经过纹理去渲染器,生成纹理代码;然后还要经过几何去渲染器,生成3D属性。

3D属性经过几何渲染器后,与语义地图及纹理代码共同进行纹理渲染,最终实现图像分层,将图像分解为背景和多个前景对象。

3D几何推理:脑补3D



美高梅注册 9



上图是几何解释模块。
该模块获取整个图像,使用来自对象提议的适当公式推断3D属性,并且可以生成可解释的表示以用于理解和操纵。这里首先使用MaskRCNN对对象实例进行分割。
对于每个对象,推断其3D网格模型和对象姿势。

之后,得出其3D属性,确保重新得出的3D投影一致。

语义&纹理推理

在语义和纹理分析的过程中,先要分析类似场景的2D信息。

使用两个单独的卷积网络来获得背景中道路、天空、树林等部分,以及前景中的轿车、货车等物体,以及的必要颜色和纹理描述代码。

传送门

3D-Aware Scene Manipulation via Inverse Graphics

Shunyu Yao, Tzu Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio
Torralba, William T. Freeman, Joshua B. Tenenbaum

https://arxiv.org/pdf/1808.09351.pdf

返回搜狐,查看更多

责任编辑:

相关文章